The MboTensorOp API. More...
Go to the source code of this file.
Typedefs | |
| typedef struct MboTensorOp_t * | MboTensorOp |
Functions | |
| MBO_EXPORT void | mboTensorOpNull (MboProdSpace h, MboTensorOp *top) |
| Create a tensor operator corresponding to the Null operator. More... | |
| MBO_EXPORT void | mboTensorOpIdentity (MboProdSpace h, MboTensorOp *top) |
| Create a tensor operator corresponding to the Identity operator. More... | |
| MBO_EXPORT void | mboTensorOpDestroy (MboTensorOp *top) |
| Destroy a tensor operator object. More... | |
| MBO_EXPORT void | mboTensorOpAddTo (MboElemOp elemop, int i, MboTensorOp top) |
| Add an embedding to a tensor operator. More... | |
| MBO_EXPORT MboProdSpace | mboTensorOpGetSpace (MboTensorOp op) |
| Get the space on which the operator is defined This method returns a non-owning pointer to the space on which the tensor operator is defined. The caller must not modify the product space or destroy it. More... | |
| MBO_EXPORT void | mboTensorOpAddScaledTo (struct MboAmplitude *alpha, MboElemOp elemop, int i, MboTensorOp top) |
| Adds scaled version of embedded operator to tensor operator. More... | |
| MBO_EXPORT MboTensorOp | mboTensorOpCopy (MboTensorOp a) |
| Create a deep copy of a tensor operator. More... | |
| MBO_EXPORT void | mboTensorOpMul (MboTensorOp a, MboTensorOp b, MboTensorOp *c) |
| Multiply two operators and add result to third (*c) += a * b. | |
| MBO_EXPORT void | mboTensorOpPlus (MboTensorOp a, MboTensorOp *b) |
| Add a tensor operator to another operator (*b) += a. | |
| MBO_EXPORT void | mboTensorOpScale (struct MboAmplitude *alpha, MboTensorOp *a) |
| Scale operator. More... | |
| MBO_EXPORT MBO_STATUS | mboTensorOpKron (int n, MboTensorOp *ops, MboTensorOp *c) |
| Tensor product of two operators. More... | |
| MBO_EXPORT int | mboTensorOpCheck (MboTensorOp op) |
| Check integrity of tensor operator. More... | |
The MboTensorOp API.
MboTensorOps provide functionality for describing tensor product operators including an operator algebra (multiplication, addition, Kronecker products) and application of tensor product operators to vectors.
1.8.8